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Abstract. The superconducting proximity effect is measured in sandwiches of thin Pb films and the alkali
metals Cs, Rb, K and Na. The Tc-dependence provides information about the interface barriers between
Pb and the alkalis. Such a barrier is particularly large in Pb/Cs sandwiches. It is not due to impurities or
oxydation. In the presence of a sufficiently strong barrier a special form of the Cooper limit can be applied
to calculate the transition temperature of the sandwich.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 73.20.-r Electron
states at surfaces and interfaces – 71.20.Dg Alkali and alkaline earth metals

1 Introduction

When a thin superconducting film is covered with a nor-
mal conductor its transition temperature is lowered. This
phenomenum is known as the “Superconducting Proxim-
ity Effect” (SPE), and it was in tensively studied in the
1960s and 70s [1–7] (see for example [8]). (In those days
one had the hope that an extrapolation of Tc would yield
a finite transition temperature for normal conductors such
as the noble metals.) However, there has been a continu-
ous interest in this effect over the years [9–13] which ex-
tended recently into superconductor-ferromagnetic metal
sandwiches (see for example [14]). In the present paper we
want to revive the SPE as a tool to investigate interfaces
between metal films.

In recent years we have investigated the properties of
thin alkali metal films [15–23]. We observed a number of
properties which were quite unexpected:

• The Hall effect and resistance of thin Cs increased dra-
matically when the film was covered in situ with small
concentrations of (s, p) impurities.

• Sandwiches of quench-condensed Fe covered with a
film of Cs or K showed a mean free path in the al-
kali film which can be up to five times the thickness
of the alkali film. This means that the electrons in the
Cs or K are almost perfectly specularly reflected at
the free surface and the interface with the Fe. The lat-
ter is quite surprizing since the Fe is very disordered
and the electrons should be diffusively scattered at the
interface.
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• Recently we used the SPE in a Pb/K/Pb sandwich to
study the local electronic properties of the K while it
was coveraged with sub-mono-layers Pb. On the one
hand the coverage of the K with Pb appeared to lo-
calize the electrons in the K while on the other hand
the Tc-reduction of the first Pb film by the K remained
unaltered.

The properties of interfaces and the ability of electrons
to cross them are important in many physical phenomena
and applications. To name one example for the latter, the
giant magneto-resistance in magnetic multi-layers depends
critically on the ability of the conduction electrons to cross
“freely” from one film to the next. The goal of this paper
is to investigate the SPE in Pb/Ak films (in the following
we use the symbol “Ak” as synonym for any of the four
alkali metals Cs, Rb, K and Na) and to show that the SPE
is a suitable tool to obtain information about interfaces.

2 Experiment

In the present investigation we prepare sandwiches of
Pb/Ak at liquid helium temperatures. In most experi-
ments we quench condense a Pb film of 13 to 14 nm thick-
ness and a resistance of about 100 Ω. The Pb is then
covered in several steps with an alkali metal. After each
evaporation the film or sandwich is annealed, the original
Pb film up to 40 K and the sandwiches up to 35 K. Then
the superconducting transition curve is recorded and the
magneto-resistance and Hall resistance are measured at
9.5 K in the field range between –7 T and +7 T. In these
experiments one has to be careful that the edges of the
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Fig. 1. The superconducting transition curves for Pb with
different coverages of K.

Pb film are covered by the normal metal. Otherwise one
obtains double transition curves. Figure 1 shows a set of
transition curves for Pb/K sandwiches.

In Figures 2a–d the dependence of Tc on the coverage
with Cs, Rb, K and Na is plotted. The full circles represent
the experimentally measured Tc. The curves are discussed
below.

3 Theory and discussion

Werthamer [3] derived an implicit set of equations for the
transition temperature of a sandwich of two superconduc-
tors. The superconductor with the lower transition tem-
perature is generally called the normal conductor because
at the Tc of the sandwich it would be in the normal con-
ducting state. In this theory the gap function ∆ (r) in the
superconductor is proportional to cos [ks (z + ds)] and in
the normal conductor proportional to cosh [kn (z − dn)],
with z = 0 at the interface. The ks,n are the inverse su-
perconducting coherence lengths. For disordered (dirty)
metal films they are given by
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Here Ts, Tn and Tc are the transition temperatures of
the two superconductors (Ts > Tn) and the sandwich,
ξs,n are the thermal coherence lengths, σ the conductivity,
γ the Sommerfeld constant (which stands for the density
of states), D the diffusion constant, vF the Fermi velocity,
τT the thermal time, and ψ (x) the digamma function.

At the interface Werthamer originally used the bound-
ary condition that 1

∆
d∆
dz is continous. De Gennes [24] de-

rived instead that ∆/ (NV ) and (D/V ) (d∆/dz) are con-
tinous at the interface, the latter only in the “dirty” limit.
The combined function (D/V ) (d∆/dz) /∆/ (NV ) =
DN (d∆/dz) /∆ is then continous as well. This yields
boundary condition

Nsξ
2
sks tan (ksds) = Nnξ

2
nkn tanh (kndn) (3.2)

which determines Tc. The equations (3.1, 3.2) together
are often called the Wertheimer-deGennes theory. We will
abriviate the theory as the WG-theory.

The WG-theory is restricted to the dirty case, where
the mean free path of the conduction electrons is much
smaller than the superconducting coherence length. It is
interesting to note that Werthamer’s equations require
only three parameter of each superconductor besides the
thickness: the transition temperature, the resistivity and
the density of states (Sommerfeld constant).

Deutscher and DeGennes [8] point out the calcula-
tion for ∆ (x) within each superconductor uses only one
root for the decay constant (the smallest Matsubara fre-
quency). Nevertheless Werthamer’s equations were suc-
cessfully applied to a number of experimental results (see
for example [8,6]). Therefore it is interesting to compare
the experimental results with the WG-theory.

In Figures 2a–d we calculate the transition tempera-
ture with the WG-theory for the different Pb/Ak sand-
wiches. As far as we know the alkali metals are not super-
conducting. On the other hand the WG-theory requires
a finite transition temperature Tn for both metal films.
Therefore we treat the alkali metals as hypothetical super-
conductors with a transition temperature of Tn = 10−5 K.
(It turns out that the choice of Tn = 10−2 K does not
make any difference in the theoretical transition tempera-
tures at the experimental thicknesses of the alkali metals.
Only in an extremely small thickness range of the alkali
metals dn → 0 does one find a small difference (which,
however, influences the initial slope dTc/ddn at zero thick-
ness of the alkali metal.) We recognize from Figure 2 that
the heavy alkali metals such as Cs show a large deviation
from the WG-theory while the sandwich with the light Na
is relatively close to the theoretical curve. For Pb/Rb and
Pb/K the region of small alkali thickness appears to be
reasonably reproduced by the WT.

The initial slope dTc/ddn of Tc versus the thickness
of the normal metal at dn = 0 can be derived from
Werthamer’s theory and is given by
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The expression χ−1
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approaches the value one

for a large (Ts/Tn) ratio, but for Tn = 10−2 K (with
Ts = 7.2 K) one has χ−1

(− ln
(
7.2/10−2

))
= −0.75. Since

the Werthamer value of the initial slope depends strongly
on the choice of Tn while at finite thickness there is no such
dependence we prefer to compare the value ∆Tc/∆dn be-
tween experiment and theory. Here ∆dn is the smallest
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(a) (b)
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Fig. 2. The transition temperatures of Pb/Ak multilayers as a function of the alkali thickness. The dotted curves are calculated
with the theory by Werthamer. For Pb/Cs, Pb/Rb and Pb/K the full curves are calculated within the Cooper model with a
barrier between the Pb and the alkali film. For Pb/Na the full curve is a guide to the eye.

evaporated film thickness of the alkali metal and ∆Tc is
the Tc-reduction due to this alkali coverage. (We will still
call the ratio ∆Tc/∆dn the initial slope.) These values are
collected in Table 1 for the four alkali sandwiches stud-
ied. For the alkali metals we used the density of states
as given in Ashcroft and Merman [25]. In collumn three
the factor N∗/N0, the ratio between the (experimental)
density of states N∗ and the free electron value N0, is
given. For the very disordered Pb we used a density ratio
of 2.5 because disordered Pb has an even higher gap ra-
tio 2∆0/kBTc = 4.6 than that of pure Pb and therefore
a larger value of (1 + λ) than pure (annealed) Pb, where
(1 + λ) is the electron-phonon enhancement factor.

The initial slope does not depend on the mean free
path in either metal. The same is true for the small val-
ues of ∆dn. In Werthamer’s theory it only depends on the
ratio of the density of states. For the Pb sandwiched with
Na, K and Rb the experimental initial slope agrees within
15% with the prediction of the WG-theory. For Cs the ex-
perimental initial slope is much smaller than Werthamer’s
prediction. We believe that this is caused by some kind of
barrier at the Pb-Cs interface.

From the experimental results the deviation between
experiment and WG-theory for the Pb/Cs sandwich is
particularly striking. One might object that the small re-
duction in Tc is caused by an oxide layer between the
Pb and the Cs. We exclude this interpretation for several
reasons: (i) The results have been reproduced in several
experiments, (ii) the other alkali metal such as Na and K
would show an even stronger tendency to oxidation.

To investigate this question we prepare a sandwich in
which the Pb is first covered with 2 nm of Na and af-
terwards with Cs of increasing thickness. In Figure 3 the
transition temperature of the Pb/Na/Cs sandwich is plot-
ted versus the alkali thickness dNa + dCs. For comparison
the Tc-dependence of the Pb/Cs and the Pb/Na sand-
wiches are shown in the same figure. One realizes that
the transition temperature of the Pb/Na/Cs sandwich is
much closer to the Pb/Na sandwich than to the Pb/Cs
sandwich. This demonstrates that, after bridging the con-
tact between the Pb and the Cs, one finds a similar Tc-
reduction as in the Pb/Na sandwich. It is not the elec-
tronic properties of the Cs which yield the small initial
slope and the weak reduction of Tc in the Pb/Cs sandwich.
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Table 1. The experimental value of ∆Tc
∆dn

and the prediction according to Werthamer’s theory for the different alkali sandwiches.

Alkali exper. N∗
N0

dn (nm)
(

∆Tc
∆dn

)
exp

(
∆Tc
∆dn

)
Wh

τTc
τfmetal code

Na GI 1.3 2.18 0.280 0.32 —
K GF 1.2 2.04 0.235 0.27 0.08
Rb GC 1.3 1.77 0.249 0.25 0.052
Cs OC 1.5 2.29 0.175 0.31 0.035

Fig. 3. The transition temperatures of Pb/Na/Cs multilayers
as a function of the alkali thickness (full circles). The transition
temperatures of the Pb/Cs sandwiches (up triangles) and the
Pb/Na sandwiches (down triangles) are shown for comparison.
The full curve for the PbCs is calculated in the Cooper model
with a barrier between the Pb and Cs films.

Instead the interface between Pb and Cs must create some
kind of obstacle which makes it harder for the electrons
to cross the interface. About the nature of this obstacles
one can only speculate at the present time. However, we
are quite sure that it is not due to dirt or oxygen. And
neither the Pb nor the Cs are individually responsible for
the obstacle because in the Pb/Na/Cs sandwich the more
aggressive Na faces each of the two and the obstacle (at
each interface) is either absent or much smaller than in
the Pb/Cs interface.

If one compares the experimental Ts curves for Pb with
Cs, Rb, K and Na with the theory of Wertheimer one rec-
ognizes right away that the deviation between experiment
and the Wertheimer theory decreases in going from Cs to
Na. It is not obvious that the Wertheimer theory has to
be correct for our Pb/Ak sandwiches; in fact this theory
may be not appropriate at all for the alkali metals. But the
Pb/Na/Cs sandwich demonstrates for the Pb/Cs case that
the deviation is not due to the Cs but the interface. There-
fore it is suggestive that all the interfaces Pb/Ak present
some kind of obstacles for the transmission of the electrons
through the interface, where the strength of the obstacle
decreases in going from Pb/Cs to Pb/Na. This does not
contradict the fact the experimental initial slopes for the
three alkali metals agree quite well with the Wertheimer

theory. This we demonstrate for the Cooper limit of the
SPE.

The Cooper limit applies when the gap function ∆ (r)
can be treated as constant in each metal of the film. This is
fulfilled when the thickness of each metal is much smaller
than its coherence length. If the exchange of electrons be-
tween the superconductor and the normal conductor is
strongly reduced then the Cooper limit is valid in a consid-
erably larger thickness range. As discussed in Appendix A
one can formulate the following condition: Mark all elec-
trons in a small energy range about the Fermi surface in
the superconductors. Follow their density distribution as a
function of time while they can propagate into the normal
conductor. If their density is at all times reasonably con-
stant within the superconductor, then the gap function
∆ (r) will be a constant ∆s (at the transition tempera-
ture) and the Cooper case applies. This can, for example,
happen for relatively thick films if the escape time from
the superconductor into the normal conductor is long.

In Appendix A we derive the Cooper limit with a bar-
rier between the two metals from a special version of the
linear gap equation. The theory requires one fitting pa-
rameter, the transmission rate 1/τsn from the Pb into the
alkali film. The resulting theoretical curves are plotted in
Figures 2a, b, c as full curves and the fitted rates τTc/τt
are collected in Table 1. They describe the behavior of Tc

at finite thickness dn of the alkali metal films quite well, in
particular the saturation in the Pb/Cs sandwich. Surpris-
ingly the WG-theory gives a better fit for the sandwiches
with Rb, K and Na at very small alkali thicknesses.

For low transmission rate 1/τsn through the interface
and large normal conductor thickness the electrons of the
superconductor escape with a rate of 1/τsn from the su-
perconductor. This acts as a pair-weakening rate of 1/τsn

and reduces the transition temperature as

∆Tc

Ts
=
π2

2
�

2πkBTc

1
τns

.

Ashida et al. [26] calculated the transition of super-
conductor – normal conductor sandwiches with barriers
in between. They described the strength of the barrier by
the coefficient of reflectivity R at the interface. (In the ab-
sence of a barrier the value of R is not zero but given by
density of states ratio). They find in the limit (R− 1) � 1
for the transition temperature

∆Tc

Ts
=
π2

16
�

2πkBTc

(1 −R) vs

ds
.

The two result are compared in Appendix A.
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A full numerical solution of the linear gap equa-
tion (A.4) with an adjustable transmission rate between
the Pb and the alkali film would be desirable. Presently
we are developing the software for such a solution.

The research was supported by NSF Grant No. DMR-0124422.

Appendix A

In close vicinity of the transition temperature the super-
conducting gap function ∆ (r) is very small and the “gap
equation” can be linearized [27]

∆ (r) = V (r)
∫
d3r′

1
τT

∑
ω

Hω (r, r′)∆ (r′) (A.1)

Hω (r, r′) = G∗
ω (r, r′)Gω (r, r′) (A.2)

1
τT

=
2πkBT

�
. (A.3)

Here ∆ (r) is the gap function at the position r, ωn =
(n+ 1/2)/τT are the Matsubara frequencies, N (r′) is the
(BCS)-density of states for one spin direction, V (r) is the
effective electron-electron interaction at position r. The
function Hω (r, r′) is the product of the two single elec-
tron Green functions Gω (r, r′) of a Cooperon. Follow-
ing de Gennes [8,24], Lueders [28] and one of the au-
thors [29] we use a different approach to solve the gap
equation. Since the Gw represent the amplitude of an
electron traveling (at finite temperature) from r′ to r the
product G∗

ω (r, r′)Gω (r, r′) describes the pair amplitude
of the Cooperon to travel from r′ to r. Since the two Gw

are conjugate complex to each other and are independent
of the spin direction, the pair amplitude is identical to
the probability of a single electron to travel from r′ to r.
The function Hω (r, r′) can be expressed by the function
F (r,0; r′, t′) which gives the probability of an electron to
travel from r′ to r during the time interval |t′| (depart-
ing at r′ at the negative time t′ and arriving at r at the
time t = 0) while it experiences an exponential damping
of exp (2 |ω| t′)

Hω (r, r′) =
∫ 0

−∞
dt′e2|ω|t′F (r,0; r′, t′)N (r′) .

This yields the gap equation

∆ (r) =

V (r)
∫
d3r′

∫ 0

−∞

dt′

τT

∑
ω

e2|ω|t′F (r,0; r′, t′)N (r′)∆ (r′) .

(A.4)

The function
∑

ω e
−2|ω|t describes the exponentially de-

caying coherence of the Cooperons.
This equation has a very transparent interpretation.

From a given position r′ and at a given time t′ < 0 there

are N (r′)∆ (r′) electrons (representing the pair ampli-
tude) propagating into all directions of the metal and ex-
periencing scattering. Along the way their number decays
exponentially as

∑
ω e

−2|ω|t. At a given time, for example
at t = 0 and at each position r one sums the contribution
of all surviving electrons from all (r′, t′), forming the in-
tegral

∫
dr′

∫ 0

−∞ dt′ and multiplies the result with V (r).
The result has to reproduce self-consistently everywhere
the gap function ∆ (r).

If one is dealing with a time dependent gap func-
tion the derivation of a time-dependent Ginzburg-Landau
equation from (A.4) is straight forward by replacing the
time 0 by t and ∆ (r) , ∆ (r′) by ∆ (r,t) , ∆ (r′, t′) [29].

Since we are here not interested in time-dependent gap
functions we may shift the time scale by starting the prop-
agation at r′ at the time t = 0 and arriving at r at the
time t > 0. Then we have

∆ (r) =

V (r)
∫
d3r′

∫ ∞

0

dt′

τT

∑
ω

e−2|ω|tF (r,t; r′, 0)N (r′)∆ (r′) .

(A.5)

The great advantage of this description is the fact that
a major part of solving the gap equation involves only
the dynamics of the conduction electrons. We demonstrate
this first for the Cooper limit of an SN-sandwich.

Cooper case without barrier: We assume that the
electron-electron interaction in the normal metal is zero
Vn = 0. In this case the gap function is only non-zero in
the superconductor and both r′ and r lie in the supercon-
ducting film. Since in the Cooper limit ∆ (r′) is constant
and has the value ∆s in the superconducting film one ob-
tains for the gap equation

∆s = Vs

∫
S

d3r′
∫ ∞

0

dt

τT

∑
ω

e−2|ω|tF (r,t; r′, 0)Ns∆s.

The integration dr′ extends only over the superconducting
film. The electron propagation function F (r,t; r′, 0) de-
scribes the probability of N (r′)∆s electrons which start
at (r′, 0) (in the superconductor) and arrive at t at the
position r (in S). (Although the start and end points
of the electron path lie in the superconductor the path
can extend into the normal conductor as well.) Since the
electrons propagate roughly with the Fermi velocity per-
pendicular to the film plane the time to move the dis-
tance ds or dn is very short compared with the ther-
mal coherence time τT = �/ (2πkBT ). Therefore any
electron – independently of where it started – will be
found, after a very short time, in the superconductor with
the probability ps = dsNs

dsNs+dnNn
. Therefore one obtains∫

S
d3r′F (r,t; r′, 0) = dsNs

dsNs+dnNn
for (almost) any time t.
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This yields the equation

∆s = VsNs
dsNs

dsNs + dnNn
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0

dt′

τT
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2πTc
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The equation (A.6) is the well known Cooper con-
dition for the transition temperature of the sandwich
where the attractive interaction is given by Veff =
Vs

dsNs

dsNs+dnNn
, resulting in the transition temperature

Tc = 1.14ΘD exp [−1/NsVeff ]. For the initial slope in the
Cooper limit one obtains then

ds

Ts

dTc

ddn
= − 1

VsNs

Nn

Ns
.

It should be pointed out that the initial slope in the
Cooper limit does not exactly agree with the result by
Werthamer, emphasizing that Werthamer’s solution con-
tains approximations.

Cooper case with barrier: In the next step we con-
sider the Cooper case with a barrier between the super-
conducting and the normal metal film. An electron in S
has a finite transmission rate through the interface which
is proportional to the density of states in the normal con-
ductor Nn and inversely proportional to the thickness of
the superconductor ds.

1
τsn

= α
1
ds
Nn.

We follow the fate of such an electron, denoting the prob-
ability to be in S or N as ns and nn, where (ns + nn) = 1.
Then we have
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1
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The solution of this equation is

ns = n∞ + n∆ exp
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− t
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where τ−1
r is the Cooperon relaxation rate. It is the sum

of the transmission rates through the interface in both
directions. This yields the following gap equation

∆s = VsNs
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(A.8)

This equation shows already qualitatively the effect of the
barrier for the two limiting cases:

• weak transmission, τT /τr < 1: In this case the sum in
the second term on the right side of equation (A.8) is
almost the sum as the first sum. One obtains almost
the transition temperature of the pure superconductor.
Tc is given by the implicit equation

1 = VsNs

nc∑
n=0

1
n+ 1

2

− VsNs
dnNn

(Nndn +Nsds)

[
ψ

(
1
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)
− ψ

(
1
2

)]

• strong transmission, τT /τr > 1: In this case one ob-
tains

1 = VsNs
dsNs

(Nndn +Nsds)

nc∑
n=0

1
n+ 1

2

+
dnNn

(Nndn +Nsds)

nc∑
n=0

1
n+ 1

2 + 1
2

τT

τr

where the second term on the right side can be ne-
glected for large τT /τr and the remaining part yields
just the Cooper transition temperature without a
barrier.

We perform the numeric solution of equation (A.8) for
the Pb/Cs sandwich. For this purpose one has to solve the
equation

dsNs

(
nc∑

n=0

1(
n+ 1

2

) − 1
VsNs

)

+ dnNn


 nc∑

n=0

1(
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2 + 1
2

τT

τr

) − 1
VsNs


 = 0 (A.9)

with

nc =
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2πTc
, nc0 =
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2πTs
(A.10)

ρ =
τT
τr

=
τT
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(
1 +
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)
1
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nc0∑
n=0

1(
n+ 1

2

) .
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The resulting Tc-values are plotted in Figures 2a and 3 as
full curves. For the transmission rate we used the value
1/τsn = 0.035/τTs = 0.035 × 2πkBTs/� = 2.0 × 1011 s−1

or τsn = 5 × 10−12 s. (1/τsn is transmission rate for an
electron in the Pb film to escape into the Cs film). It
is much longer than the superconducting time constant
τTs = �/ (2πkBTs) = 1.7 × 10−13 s and the ballistic flight
time of the Pb electrons with (normalized) Fermi velocity
(in z-direction): τb = 2d/v∗F = 4 × 10−14 s.

Similar evaluations are performed for the Pb/Rb and
Pb/K sandwiches. The transmission rate ratios τTs/τsn

are included in Table 1. For the Pb/Na sandwich the
agreement was not sufficient to include it in the Figure 2d.
All the theoretical curves for the Cooper case with barrier
yield a too large initial slope. For small thicknesses of the
normal conductor the relaxation rate becomes arbitrar-
ily large according to relation (A.7) This is unphysical,
however, because the electron needs at least the ballistic
flight time τb to cross over from the superconductor into
the normal conductor. Therefore this range has to be ex-
cluded from the evaluation. Going from Pb/Cs to Pb/Na
the alkali thickness range in which the barrier approach is
not appropriate increases.

Ashida et al. [26] calculated the transition temperature
of SN-sandwiches with barriers in-between. They charac-
terize the strength of the barrier by the coefficient of re-
flectivity R at the interface. (In the absence of a barrier
the value of R is not zero but given by density of states ra-
tio.) They find in the limit (R− 1) � 1 for the transition
temperature (in our notation)

∆Tc

Ts
=
π2

16
�

2πkBTc

(1 −R) vs

ds
.

This limit (R− 1) � 1 corresponds to in our notation
to the limit 1/τsn � 1/τT . If we follow Ashida et al. and
expand A.9 in terms of the pair breaking parameter ρ we
obtain

nc∑
n=0

1(
n+ 1

2 + 1
2ρ
) ≈

nc∑
n=0

1
n+ 1

2

− ρ

2
∗ 1

2
π2

(
dnNn

dsNs

)−1

= −1 +
ρ
2 ∗ 1

2π
2(∑nc

n=0
1

(n+ 1
2 )

− 1
VsNs

)
(A.11)

which yields

ln
(
Ts

Tn

)
=
π2

4
τT
τsn

or
∆Tc

Ts
=
π2

4
�

2πkBTc

1
τsn

.

The calculation of 1/τsn in terms of R is straight forward

1
τsn

=

∫ 1

0
vF cos θ

2ds
(1 −R) d (cos θ)∫ 1

0
d (cos θ)

=
vF (1 −R)

4ds
.

This expansion yields a perfect agreement between the
results of Ashida et al. and ours. However, the result is

somewhat surprising since the Tc does not depend on the
thickness of the normal conductor. Our numerical evalua-
tion shows that this is not quite correct. The reason is the
following.

The value of ρ = τT

τr
= τT

τsn

(
1 + dsNs

dnNn

)
diverges for

small thickness of the normal conductor, always reach-
ing the limit of strong transmission for dn → 0. That
means that at small thickness of the normal conductor
one expects the full Cooper reduction of the transition
temperature. This means in other words that even for
(R− 1) � 1 the expansion by Ashida et al. has to exclude
the range of very small normal conductor thickness. When
dn increases the transmission into the normal conductor
becomes less effective, the superconducting film behaves
more isolated and the Tc-reduction is much less effective.
This is the experimental observation, in particular for the
Pb/Cs sandwich.

References

1. P. Hilsch, R. Hilsch, Naturwissenschaften 48, 549 (1961)
2. P. Hilsch, R. Hilsch, Z. Physik 180, 10 (1964)
3. N.R. Werthamer, Phys. Rev. 132, 2440 (1963)
4. P.G. de Gennes, E. Guyon, Phys. Lett. 3, 168 (1963)
5. J.J. Hauser, H.C. Theurer, N.R. Werthamer, Phys. Rev.

136, A 637 (1964)
6. G. Bergmann, Z. Physik 187, 395 (1965)
7. G.v. Minigerode, Z. Physik 192, 379 (1966)
8. G. Deutscher, P.G. de Gennes, Superconductivity, edited by

R.D. Parks (Marcel Decker, Inc, New York, 1969), p. 1005
9. A.Z. Zaitsev, Physica C 185-189, 2539 (1991)

10. A.Z. Zaitsev, Physica B 203, 274 (1997)
11. A.F. Volkov, A.V. Zaitsev, Phys. Rev. B 53, 9267 (1996)
12. R.G. Mints, I.B. Shapiro, Phys. Rev. B 57, 10318 (1998)
13. A. Volkovyz, N. Allsoppy, C.J. Lamberty, J. Phys.:

Condens. Matter 8, 45 (1996)
14. M.A. Sillanp, T.T. Heikkil, Europhys. Lett. 56, 590 (2001)
15. H. Beckmann, T. Fulmer, D. Garrett, M. Hossain, G.

Bergmann, Phys. Rev. B 59, 7724 (1999)
16. H. Beckmann, G. Bergmann, Eur. Phys. J. B 13, 495

(2000)
17. H. Beckmann, G. Bergmann, Phys. Rev. Lett. 83, 2417

(1999)
18. G. Bergmann, M. Hossain, Phys. Rev. B 60, 15621 (1999)
19. G. Bergmann, M. Hossain, Phys. Rev. Lett. 86, 2138

(2001)
20. M. Hossain, G. Bergmann, Eur. Phys. J. B 26, 7 (2002)
21. F. Song, G. Bergmann, Phys. Rev. Lett. 88, 167202-1

(2002)
22. D. Garrett, G. Bergmann, Phys. Rev. B 66, 224407 (2002)
23. F. Song, G. Bergmann, Phys. Rev. B 68, 094403 (2003)
24. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)
25. N.W. Ashcroft, N.D. Mermin, Solid State Physics

(Saunders College, Philadelphia)
26. M. Ashida, J. Hara, K. Nagai, Phys. Rev. B 45, 828 (1992)
27. L.P. Gorkov, Pis’ma Zh. Eksp. i. Teor. Fiz. 37, 1407

(1959); L.P. Gorkov JETP 10, 998 (1960)
28. G. Lueders, K.-D. Usadel, in Springer Tracts in Modern

Physics, Vol. 56, 1 (1971), edited by G. Hoehler (Springer
Verlag Berlin, Heidelberg, New York, 1971)

29. G. Bergmann, Z. Physik 234, 70 (1970)


